Spam Filtering with Naive Bayes -

Which Naive Bayes?

Vangelis Metsis¹,², Ion Androutsopoulos¹ and
Georgios Paliouras²

¹Department of Informatics, Athens University of Economics & Business
²Institute of Informatics & Telecommunications, N.C.S.R. "Demokritos"
"We use a Naive Bayes classifier..."

- Naive Bayes is very popular in spam filtering.
 - Almost as accurate in SF as SVMs, AdaBoost, etc.
 - Much simpler, easy to understand and implement.
 - Linear computational and memory complexity.

- But there are many NB versions. *Which one?*
 - Bayes' theorem + naive independence assumptions.
 - Different event models, instance representations.
 - Differences in performance, some unexpected.
What you are about to hear...

- A short discussion of 5 NB versions.
 - Multivariate Bernoulli NB (Boolean attributes)
 - Multinomial NB (frequency-valued attributes)
 - Multinomial NB with Boolean attributes (strange!)
 - Multivariate Gauss NB (real-valued attributes)
 - Flexible Bayes (John & Langley, kernels)
- Better understanding may lead to improvements.

- Experiments on 6 new non-encoded datasets.
 - Approximations of 6 user mailboxes, preserving order of arrival, emulating ham:spam fluctuation, ...
What you are not going to hear...

- "Bayesian" methods that do not correspond to what is known as Naive Bayes, nor "Bayesian". Though it would be interesting to compare!
- Filters that use information other than the bodies and subjects of the messages.
 - Operational filters include additional attributes or components for headers, attachments, etc.
- Filters trained on data from many users.
 - We only consider personal filters, each trained incrementally on messages from a single user.
Message representation

- Each message is represented by a vector of \(m \) attribute values (features).
- Each attribute corresponds to a token.
 - Boolean attributes (token in message or not)
 - TF attributes (occurrences of token in message)
 - normalized TF (TF / message length in tokens)

Attribute selection: token must occur in \(>4 \) training messages + Information Gain.
Message classification

\[\mathbf{x} = \langle x_1, x_2, \ldots, x_m \rangle \]

From Bayes' theorem:

\[P(\text{spam} | \mathbf{x}) = \frac{P(\text{spam}) \cdot P(\mathbf{x} | \text{spam})}{P(\mathbf{x})} \]

\[P(\text{ham} | \mathbf{x}) = \frac{P(\text{ham}) \cdot P(\mathbf{x} | \text{ham})}{P(\mathbf{x})} \]

• Classify as spam iff \(P(\text{spam} | \mathbf{x}) \geq T \).

 - Varying \(T \in [0, 1] \): tradeoff between **wrongly** blocked hams (**FPs**) vs. **wrongly** blocked spams (**FNs**).
The multivariate Bernoulli NB

\[\vec{x} = \langle x_1, x_2, x_3, \ldots x_m \rangle = \langle 0, 1, 1, \ldots, 0 \rangle \]

- Each Boolean attribute \(x_i \) shows if the corresponding token \(t_i \) occurs in the message.

- Event model: \(m \) independent Bernoulli trials.
 - Select independently the value of each attribute.

\[
p(\vec{x}|\text{spam}) = \prod_{i}^m p(x_i|\text{spam}) = \prod_{i}^m p(t_i|\text{spam})^{x_i} \cdot (1 - p(t_i|\text{spam}))^{1-x_i}
\]

\[
p(t_i|\text{spam}) = \frac{1 + M_{t_i, \text{spam}}}{2 + M_{\text{spam}}}
\]

\[
p(\vec{x}|\text{ham}) = \ldots
\]
The multinomial NB

$$\vec{x} = \langle x_1, x_2, x_3, ..., x_m \rangle = \langle 0, 1, 3, ..., 0 \rangle$$

- Each attribute x_i shows how many times the corresponding token t_i occurs in the message.

- Event model: pick *independently* with replacement tokens up to the length of the message, counted in tokens.
The multinomial NB - continued

\[\tilde{x} = \langle x_1, x_2, x_3, \ldots x_m \rangle = \langle 0, 1, 3, \ldots, 0 \rangle \]

Multinomial distribution:

\[
p(\tilde{x}|\text{spam}) = \frac{\prod_{i=1}^{m} p(t_i|\text{spam})^{x_i}}{|d|!} \]

\[p(\tilde{x}|\text{ham}) = \ldots \]

|d|: message length in tokens; we assume it does not depend on the category.

\[p(t_i|\text{spam}) = \frac{1 + N_{t_i, \text{spam}}}{m + N_{\text{spam}}} \]

occurrences of \(t_i \) in training spams

occurrences of all tokens in training spams
Multinomial NB, Boolean attributes

- Same as before, but Boolean attributes.

\[p(\mathbf{x}|\text{spam}) = \prod_{i=1}^{m} p(t_i|\text{spam})^{x_i} \]

\[p(\mathbf{x}|\text{ham}) = \ldots \]

- The multivariate Bernoulli NB (Boolean) considers more directly missing tokens

\[p(\mathbf{x}|\text{spam}) = \prod_{i} p(t_i|\text{spam})^{x_i} \cdot (1 - p(t_i|\text{spam}))^{1-x_i} \]

- and uses different estimates of \(p(t_i|\text{category}) \).
Hold on, isn't this weird?

- An advantage of the multinomial NB is supposed to be that it accommodates TFs.
 - Previous work [McCallum & Nigam, Schneider, Hovold] shows it outperforms the (Boolean) multivariate Bernoulli NB.

- **Why** replace TFs with Boolean attributes?
 - It performs even better on Ling-Spam [Schneider].
 - With TF attributes, the multinomial NB in effect assumes that attributes follow Poisson distributions in each category [Eyheramendy et al.], which may not be true.
The multivariate Gauss NB

\[\hat{x} = \langle x_1, x_2, x_3, \ldots x_m \rangle = \langle 0, 0.01, 0.03, \ldots, 0 \rangle \]

- Attribute values: TFs / msg. length (in tokens).
- Independence assumption + assume attributes follow normal distributions per category.

\[
p(\hat{x}|\text{spam}) = \prod_{i}^m p(x_i|\text{spam}) = \prod_{i}^m g(x_i; \mu_{i,\text{spam}}, \sigma_{i,\text{spam}})
\]

estimated from training spams

Some probability mass is lost...

\[
p(\hat{x}|\text{ham}) = \ldots
\]
Flexible Bayes [John & Langley]

- Same as multivariate Gauss NB, but for each x_i we have as many normal distributions as the number of values x_i has in the training data.

\[
p(\vec{x}|\text{spam}) = \prod_{i} p(x_i|\text{spam}) = \prod_{i} \frac{1}{L_{i,c}} \cdot \sum_{l=1}^{L_i} g(x_i; \mu_{i,l}, \sigma_{\text{spam}})
\]

$L_{i,c}$: number of different values x_i has in the training instances of category c.

- Multiple normal distributions allow us to approximate better the real distributions.

\[
p(\vec{x}|\text{ham}) = \ldots
\]

$1/\sqrt{M_{\text{spam}}}$
The **Enron-Spam** datasets

- 6 datasets, each emulating a user mailbox.
 - **Hams** from 6 Enron users.
 - **Spams** from 3 sources (G. Paliouras, B. Guenter, SpamAssassin+HoneyPot)

- Removed self-addressed messages, duplicates from spam traps, HTML, attachments, headers.

- Varying **ham:spam** ratios (approx. 3:1, 1:3).

- Available in both raw and preprocessed form.

<table>
<thead>
<tr>
<th>ham + spam</th>
<th>ham : spam</th>
</tr>
</thead>
<tbody>
<tr>
<td>farmer-d + GP</td>
<td>3672 : 1500</td>
</tr>
<tr>
<td>kaminski-v + SH</td>
<td>4361 : 1496</td>
</tr>
<tr>
<td>kitchen-l + BG</td>
<td>4012 : 1500</td>
</tr>
<tr>
<td>williams-w3 + GP</td>
<td>1500 : 4500</td>
</tr>
<tr>
<td>beck-s + SH</td>
<td>1500 : 3675</td>
</tr>
<tr>
<td>lokay-m + BG</td>
<td>1500 : 4500</td>
</tr>
</tbody>
</table>
The **Enron-Spam** datasets - continued

In each dataset, we maintain the original order of arrival in each category.

But otherwise, we order randomly, leading to worst-case ham:spam fluctuation.

Incremental training/testing (batches of 100).

- The user checks the "spam" folder and retrains every 100 received messages.
Which NB is best? - ROC curves

- The differences are not always statistically significant (95% confidence intervals).
- The rankings differ across the datasets.
- But some consistent top/worst performers.
Which NB is best? - summary

- On all datasets, the multinomial NB did better with Boolean attributes than with TF ones.
 - We confirmed Scheider's observations.
 - But stat. significant difference in only 2 datasets.
- The Boolean multinomial NB was also the top performer in 4/6 datasets, and was clearly outperformed only by Flexible Bayes (in 2/6).
 - But again not always stat. significant differences.
- The multivariate Bernoulli is clearly the worst.
Which NB is best? - continued

- Flexible Bayes impressively superior in 2/6 datasets, and among top-performers in 4/6.
 - But skewed "probabilities", not allowing to reach ham recall > 99.90%, unlike other NB versions.
 - The same applies to the multivariate Gauss NB.

- Flexible Bayes clearly outperforms the multivariate Gauss NB (norm. TF), but not always the multinomial NB with TF attributes.

- Overall the Boolean multinomial NB seems to be the best, but more experiments needed.
How many attributes should I use?

- We tried 500, 1000, 3000 (token) attributes.
- Best results for 3000 attributes, but very small differences; see paper.
- May not be worth using very large attribute sets in operational filters.
 - Though linear computational complexity.
 - Training: $O(\text{attributes} \times \text{training_msgs})$.
 - Classification FB: $O(\text{attributes} \times \text{training_msgs})$.
 - Classification others: $O(\text{attributes})$.
Anything to remember then?

- Don't just say "we use Naive Bayes"...
- Don't use the multivariate Bernoulli NB.
- If you use the multinomial NB, try Boolean.
 - You may also want to consider n-gram models and other improvements; see references.
- Worth investigating further Flexible Bayes.
- Very large attribute sets may be unnecessary.
- 6 new non-encoded emulations of mailboxes.
 - Six real mailboxes coming soon, but PU encoding.