Graph vs. bag representation models for the topic classification of web documents

Printer-friendly versionSend by email
G. Papadakis, G. Giannakopoulos & G. Paliouras
Text classification constitutes a popular task in Web research with various applications that range from spam filtering to sentiment analysis. In this paper, we argue that its performance depends on the quality of Web documents, which varies significantly. For example, the curated content of news articles involves different challenges than the user-generated content of blog posts and Social Media messages. We experimentally verify our claim, quantifying the main factors that affect the performance of text classification. We also argue that the established bag-of-words representation models are inadequate for handling all document types, as they merely extract frequent, yet distinguishing terms from the textual content of the training set. Thus, they suffer from low robustness in the context of noisy or unseen content, unless they are enriched with contextual, application-specific information. In their place, we propose the use of n-gram graphs, a model that goes beyond the bag-of-words representation, transforming every document into a graph: its nodes correspond to character or word n-grams and the co-occurring ones are connected by weighted edges. Individual document graphs can be combined into class graphs and graph similarities are employed to position and classify documents into the vector space. This approach offers two advantages with respect to bag models: first, classification accuracy increases due to the contextual information that is encapsulated in the edges of the n-gram graphs. Second, it reduces the search space to a limited set of robust, endogenous features that depend on the number of classes, rather than the size of the vocabulary. Our thorough experimental study over three large, real-world corpora confirms the superior performance of n-gram graphs across the main types of Web documents.
Software and Knowledge Engineering Laboratory (SKEL)
Publication Name: 
World Wide Web
ISSN Code: 
1386-145X (print), 1573-1413 (online)

© 2018 - Institute of Informatics and Telecommunications | National Centre for Scientific Research "Demokritos"